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Abstract 

The article deals with the generalizations of Jensen-Mercer’s inequality using 
affine combinations, which can be represented as convex combinations. The 
generalized Jensen-Mercer’s inequality is also obtained for the convex function 
of several variables applying affine combinations of the simplex. 

1. Introduction 

1.1. Combinations of scalars and vectors 

The convex sets are generally observed in a real vector space .X  
Affiliation to some vector set is analytically expressed by combinations of 
vectors (points) X∈ix  and scalars (coefficients) .R∈ip  The sum 
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belongs to the vector subspace { }ixlin  (the smallest vector space that 

contains all ix ), and it is called the linear combination. If ,11 =∑ = i
n
i p  

the sum in (1.1) belongs to the affine hull { }ixaff  (the smallest translated 

vector space that contains all ix ), and it is called the affine combination. 

If 11 =∑ = i
n
i p  and all [ ],1,0∈ip  the sum in (1.1) belongs to the convex 

hull { }ixconv  (the smallest convex vector set that contains all ix ), and it 

is called the convex combination. 

1.2. Jensen’s inequality and related results 

In the discrete case, Jensen’s inequality is applied to the convex 
combinations of vectors. 

Theorem A [Jensen’s inequality]. Let X  be a real vector space.       

Let ii
n
i xp∑ =1  be a convex combination of vectors X∈ix  and          

scalars R∈ip  of the sum .11 =∑ = i
n
i p  Then every convex function 

{ } R→nxxf ,,conv: 1 …  verifies the inequality 
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The famous inequality in (1.2) is usually called the discrete form of 
Jensen’s inequality, and can be found in many books, for example, in      
[5, pages 112-113]. 

Let us mention the following two related results: 

Theorem B [3, Theorem 1.2]. Let [ ] R⊂∈ baxx n ,,,1 …  be points, 

and 0≥ip  be weights with .11 =∑ = i
n
i p  If [ ] R→baf ,:  is a convex 

function, then 
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The inequality in (1.3) is usually called Jensen-Mercer’s inequality. 
Generalization of this inequality turned toward Jensen-Steffensen’s 
inequality has been achieved in [1]. Jensen-Steffensen’s inequality uses 
the assumption of order of the points .ix  

The Jensen-Mercer inequality in (1.3) was generalized by applying 
the majorization assumptions. 

Theorem C [6, Theorem 2.1]. Let R→I:f  be a continuous convex 

function on an interval .R⊂I  Suppose ( )maa ,,1 …=a  with ,I∈ja  

and ( )ijx=X  is a real mn ×  matrix such that I∈ijx  for all ., ji       

Let 0≥ip  be weights with .11 =∑ = i
n
i p  

If a majorizes each row of X, that is, 

( ) ( ) ax == mimii aaxx ,,,, 11 …≺…  for each ,,,1 ni …=  

then we have the inequality 
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2. Inequalities for Convex Functions of One Variable 

The main result in this section is Theorem 2.4, which represents 
Jensen’s inequality for one variable convex function and affine 
combinations from the interval. 

In what follows, we use a real interval [ ]ba,  assuming .ba <  Every 

R∈x  can be uniquely presented as the affine combination 

,bax xx β+α=   (2.1) 
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where 

.
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1
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b

x

xx −=β=α  (2.2) 

Let RR →:f  be a convex function, and { }
cho

,baf  be the chord line passing 

through the points ( )( )afaA ,  and ( )( )bfbB ,  of the graph of f. If 

[ ],, bax ∈  then the above combination is convex, and we have the chord 

inequality 

( ) ( ) ( ) { }( ).cho
, xfbfafxf baxx =β+α≤   (2.3) 

If [ ],, bax ∈/  then the reverse inequality is valid in (2.3). 

Simplicity of the chord line { }( )xf ba
cho

,  as the affine function ( ) lxxh += k  

will be very useful. 

Lemma 2.1. Let R∈ix  be points. Let R∈αi  be coefficients of the 

sum .11 =α∑ = i
n
i  Then every affine function RR →:h  verifies the 

equality 
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  (2.4) 

We will examine the behaviour of convex functions on some special 
types of affine combinations. 

Lemma 2.2. Let [ ]bac ,∈  be a point. Let [ ] [ ]1,1,1,0, −∈γ∈βα      

be coefficients of the sum .1=γ+β+α  Then every convex function 

[ ] R→baf ,:  verifies the inequality 
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( ) ( ) ( ) ( ).cfbfafcbaf γ+β+α≤γ+β+α   (2.5) 

Proof. First of all, let us show that the affine combination 
cba γ+β+α  belongs to [ ]., ba  Since [ ],, bac ∈  it has to be bac cc β+α=  

for coefficients cα  and cβ  taken from the formulas in (2.2). Then we have 

( ) ( )babacba cc β+αβ−α−+β+α=γ+β+α 1  

    [ ( ) ( ) ] [ ( ) ( ) ] .1111 ba cccc βα−+β−β+αβ−+α−α=   (2.6) 

The coefficients in the square brackets are non-negative with the sum 
equal to 1, so the observed expression cba γ+β+α  belongs to [ ]., ba  

If ,0≥γ  the inequality in (2.5) is the Jensen inequality for the three-

membered convex combination .cba γ+β+α  

If ,0≤γ  we use the inequality in (2.3) and the affinity of the chord 

line { },
cho

,baf  in this way; 

( ) { }( )cbafcbaf ba γ+β+α≤γ+β+α cho
,  

{ }( ) { }( ) { }( )cfbfaf bababa
cho

,
cho

,
cho

, γ+β+α=  

( ) ( ) ( ),cfbfaf γ+β+α≤  

respecting that { }( ) ( ) { }( ) ( ),, cho
,

cho
, bfbfafaf baba ==  and { }( ) ( ).cho

, cfcf ba γ≤γ   

Sufficient conditions on the coefficients in Lemma 2.2 are: [ ]1,0, ∈βα  

and .1=γ+β+α  From these conditions, it follows [ ].1,1−∈γ  

The following useful fact is the consequence of the equality in (2.6). 

Corollary 2.3. An affine combination cba γ+β+α  belongs to [ ]ba,  

for every [ ]bac ,∈  if and only if the coefficients α  and β  belong to [ ].1,0  
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Proof. The sufficiency is proved in Lemma 2.2. The necessity follows 
by putting the extreme values of the coefficients cα  and cβ  (0 or 1) in the 

right-hand side of the equality in (2.6).   

The analytic inequality written in the formula in (2.5) can be 
described by a geometric figure. Given [ ],, bac ∈  take the graph points 

( )( ) ( )( ),,,, bfbBafaA  and ( )( ),, cfcC  and determine the position of the 

points 

( ) ( ) ( )( ),, cfbfafcbaP γ+β+αγ+β+α  

for [ ]1,0, ∈βα  and .1=γ+β+α  We have the radius-vectors equality 

( ) ( ) ( ).CBABACBAP rrrrrrrrr GGGGGGGGG
−+γ−γ+β+γ+α=γ+β+α=   (2.7) 

If ,0≥γ  the left-hand side of the equality in (2.7) represents the 

convex combinations of the vectors ,, BA rr GG  and .Cr
G  Interpreted 

geometrically, the points P belong to the triangle { }.,,conv CBA  

If ,0≤γ  the coefficients [ ]1,0,, ∈γ−γ+βγ+α  with the sum equal 

to 1. Take the point ( ) ( ) ( )( )., cfbfafcbaD −+−+  The right-hand side of 

the equality in (2.7) represents the convex combinations of the vectors 
,, BA rr GG  and .Dr

G  This means that the geometric location of the points P is 

just the triangle { }.,,conv DBA  

Theorem 2.4. Let [ ]baxi ,∈  be points. Let [ ],1,0,, ∈βα ip  

[ ]1,1−∈γ  be coefficients of the sums .11 ==γ+β+α ∑ = i
n
i p  Then every 

convex function [ ] R→baf ,:  verifies the inequality 

( ) ( ) ( ).
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γ+β+α≤












γ+β+α  (2.8) 
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Proof. Since [ ],,1 baxp ii
n
i ∈∑ =

 the affine combination γ+β+α ba  

[ ]baxp ii
n
i ,1 ∈∑ =

 by Lemma 2.2. The proof continues as in Lemma 2.2. 

Particularly, in the case ,0≤γ  the chord inequality { }( ) ( )iiba xfxf γ≤γ cho
,  is 

applied to every .ix   

For 0=β=α  and ,1=γ  the inequality in (2.8) is reduced to the 

Jensen inequality. For 1=β=α  and ,1−=γ  the inequality in (2.8) is 

reduced to the Jensen-Mercer inequality. 

Given a function f, points ix  and coefficients ip,,, γβα  that satisfy 

the conditions of Theorem 2.4, the points 

( ( ) ( ) ( )),,
11 ii

n

iii
n

i
xfpbfafxpbaP ∑∑ ==

γ+β+αγ+β+α  

belong to the convex polygon 

{ ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )}.,,,,,,,conv bfbBxfbfafxbaDxfxCafaA iiiiii −+−+=P  

Such a polygon P  for 2=n  is shown in Figure 1. 

 

Figure 1. Geometric interpretation of the inequality in (2.8). 
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Lemma 2.2 can be used to obtain a more general variant of Theorem 
2.4 introducing points ja  that do not belong to the convex hull of the 

points ,ix  as stated: 

Theorem 2.5. Let R∈ij xa ,  be points so that 

{ } { } ( ){ }.0,,conv,, 11 sntendpoiorxxaa nm /=…∩…  

Let [ ] [ ]1,1,1,0, −∈γ∈α ij p  be coefficients of the sums =γ+α∑ = j
m
j 1  

.11 =∑ = i
n
i p  

If 

{ } ,0,,conv1

1
1

1
1

>α∈α
α

∑∑
∑ ==

=

j

m

j
njj

m

jj
m

j

forxxa …  

then every convex function { } R→maaf ,,conv: 1 …  verifies the inequality 
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γ+α  (2.9) 

Proof. Take [ ] { }.,,conv, 1 nxxba …=  The representation j
m
j α∑ =1  

baa j β+α=  can be achieved with [ ]1,0, ∈βα  and .1 j
m
j α=β+α ∑ =

 If 

we still substitute ,1 ii
n
i xpc ∑ =

=  the combination under the function f is 

reduced to the affine combination [ ]., bacba ∈γ+β+α  

If ,ba <  the proof of Lemma 2.2 can be applied, respecting the 

inequalities { }( ) ( ),cho
, jjjbaj afaf α≤α  and { }( ) ( )iiba xfxf γ≤γ cho

,  for .0≤γ  

If ,ba =  the support line { } ( )xfy a
sup=  would be used.   
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Similar assumptions as in Theorem 2.5 with the internal and external 
points were applied to obtain Jensen’s inequality in [7, Section 2]. 

We are trying to generalize the inequality in (2.8) using the special 

affine combinations ii
n
i xγ∑ =1  instead of the convex combinations 

.1 ii
n
i xp∑ =

 As the orientation, the following lemma can be specified. 

Lemma 2.6. Let [ ]badc ,, ∈  be points. Let [ ] ∈δ∈γβα ,1,0,, [ ]1,1−  

be coefficients of the sum .1=δ+γ+β+α  

If 0≥δ+α  and ,0≥δ+β  then every convex function [ ] R→baf ,:  

verifies the inequality 

( ) ( ) ( ) ( ) ( ).dfcfbfafdcbaf δ+γ+β+α≤δ+γ+β+α   (2.10) 

Proof. Let us prove the inequality in (2.10) for .0≤δ  Since the 
right-hand side of the equality 

( ) ( ) ( ),dbacbadcba −+δ−γ+δ+β+δ+α=δ+γ+β+α   (2.11) 

is the convex combination, we first apply Jensen's inequality, and then 
the inequality in (2.5) to .dba −+  The procedure goes as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )dbafcfbfafdcbaf −+δ−γ+δ+β+δ+α≤δ+γ+β+α  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]dfbfafcfbfaf −+δ−γ+δ+β+δ+α≤  

( ) ( ) ( ) ( ),dfcfbfaf δ+γ+β+α=  

which ends the proof of the observed case.   

It is not necessary to require the condition [ ],1,1−∈δ  because it 

follows from other coefficient conditions. 

Applying experience of Lemma 2.6, we can formulate the following 
generalization of Theorem 2.4: 
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Theorem 2.7. Let [ ]baxi ,∈  be points. Let [ ] [ ]1,1,,1,0, −∈γγ∈βα i   

be coefficients of the sums .11 =γ=γ+β+α ∑ = i
n
i  Suppose 0,,1 ≥γγ kii …  

and .0,,1 ≤γγ
+ nk ii …  Let jij γ=δ ∑ =

k
1  and .1 ji

n
j γ=δ ∑ +=k  

If either 

,0,0,0 ≥δγ+β≥δγ+α≥γ  

or 

,0,0,0 ≥γδ+β≥γδ+α≤γ  

then every convex function [ ] R→baf ,:  verifies the inequality 

( ) ( ) ( ).
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n

i
ii

n

i
xfbfafxbaf γγ+β+α≤













γγ+β+α ∑∑

==

 (2.12) 

Proof. Let us prove the case .0≥γ  The right-hand side of the 

decomposition 

jjjj ii

n

j
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j
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i
xxbaxba γγ+γγ+β+α=γγ+β+α ∑∑∑

+=== 111 k

k
 

( ) ( ) jj ii
j

xba γγ+δγ+β+δγ+α= ∑
=

k

1
 

( ) ( ),
1

jj ii

n

j
xba −+γ−γ+ ∑

+=k
 

is the convex combination that belongs to [ ]., ba  We first apply the 

Jensen inequality to the above convex combination, then the inequality 
in (2.5) to affine combinations ,ijxba −+  and so, using the same 

procedure as in Lemma 2.6, obtain the inequality in (2.12).   
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The inequality in (2.12), together with its assumptions, recalls the 
Jensen-Steffensen inequality, but no requirement for the order of the 
points .ix  

2.1. Generalizations 

Theorem 2.4 can be generalized by introducing a real valued function 
g defined on the non-empty set ,S  as follows: 

Corollary 2.8. Let R→S:g  be a function that attains extreme 
values ( ) ( )bgag ,  for some ,, S∈ba  thus ( ) ( ) ( ){ } I=∈ bgagxg ,conv  for 
every .S∈x  Let S∈ix  be points. Let [ ] [ ]1,1,1,0,, −∈γ∈βα ip  be 

coefficients of the sums .11 ==γ+β+α ∑ = i
n
i p  Then the inequality 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ),
11

ii

n

i
ii

n

i
xgfpbgfagfxgpbgagf ∑∑

==

γ+β+α≤












γ+β+α  

(2.13) 

holds for every convex function .: R→If  

We can include more functions and more intervals in the 
generalization procedure. 

Corollary 2.9. Let R→S:jg  be functions that attain extreme values 

( ) ( )jjjj bgag ,  for some ,, S∈jj ba  thus ( ) { ( ) ( )} jjjj bgagxg I=∈ ,conv  

for every .S∈x  Let S∈jix  be points. Let [ ],1,0,,, ∈βα jijjj pp  

[ ]1,1−∈γ j  be coefficients of the sums .111 ===γ+β+α ∑∑ == j
m
jij

n
ijjj pp  

Then the inequality 

( ) ( ) ( ) 
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γ+β+α≤ ∑∑

==
ijjij
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i
jjjjjjjj
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j
xgfpbgfagfp  (2.14) 

holds for every convex function { } .conv: 1 R→mf II ∪…∪  
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Proof. First apply the basic form of Jensen’s inequality with respect 

to the non-negative coefficients ,jp  then Corollary 2.8.   

The generalizations of Theorem 2.7 can be implemented in exactly 
the same way. 

2.2. Application to quasi-arithmetic means 

Let R⊆I  be an interval. In the applications of convexity, we often 

use strictly monotone continuous functions R→/ϕ I:, v  such that v/  is 

convex with respect to ϕ  ( ),convex-is ϕ/v  that is, 1−ϕ/= Dvf  is convex 

on ( ).Iϕ  A similar notation is used for the concavity. 

Let ii
n
i xp∑ =1  be a convex combination from .I  The discrete 

arithmetic-quasi-ϕ  mean of the points ix  with the coefficients ip  is the 

point 

( ) ( ) ,;
1

1













ϕϕ= ∑

=

−
ϕ ii

n

i
ii xppxM   (2.15) 

which belongs to .I  The point ( )ii pxM ;ϕ  can also be called the -quasi-ϕ  

center of the convex combination .1 ii
n
i xpc ∑ =

=  The formula in (2.15) 

may be applied for a quasi-arithmetic mean definition of an affine 

combination ii
n
i xpba ∑ =

γ+β+α 1  that belongs to [ ],, ba  in this way; 

( ) ( ) ( ) ( ) .,,;,,
1

1













ϕγ+βϕ+αϕϕ=γβα ∑

=

−
ϕ ii

n

i
ii xpbapxbaM   (2.16) 

The mean defined in (2.16) belongs to [ ]ba,  because ( ) ( ) γ+βϕ+αϕ ba  

( )ii
n
i xp ϕ∑ =1  belongs to [ ]( )., baϕ  
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We have the following application of Theorem 2.4 to the quasi-
arithmetic means. 

Corollary 2.10. Let [ ]baxi ,∈  be points. Let [ ],1,0,, ∈βαip  

[ ]1,1−∈γ  be coefficients of the sums .11 ==γ+β+α ∑ = i
n
i p  Let 

[ ] R→/ϕ bav ,:,  be strictly monotone continuous functions. 

If v/  is either convex-ϕ  and increasing or concave-ϕ  and decreasing, 

then the inequality 

( ) ( ),,,;,,,,;,, iivii pxbaMpxbaM γβα≤γβα /ϕ   (2.17) 

holds. 

If v/  is either convex-ϕ  and decreasing or concave-ϕ  and increasing, 

then the reverse inequality is valid in (2.17). 

Proof. The proof is easy and uses the convex (respectively, concave) 

function [ ]( ) ,,:1 R→ϕϕ/= − bavf D  which can be applied to Theorem 

2.4.   

Using the pairs of functions ( ) ( ) ,ln,1 xxvxx =/=ϕ −  and ( ) ,ln xx =ϕ  

( ) xxv =/  in the inequality in (2.17) with ,0, >ba  we get the harmonic-

geometric-arithmetic inequality for the means defined in (2.16): 

.
11

1

1
ii

n

i

p
i

n

ii
i

n

i
xpbaxbax

p
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i ∑∏∑
=

γ

=

βα
−

=

γ+β+α≤≤












γ+β+α  (2.18) 

The inequality in (2.17) can be refined using the procedures given in 
[4, Section 2]. Theorem 2.7, Corollaries 2.8 and 2.9 can also be applied to 
derive quasi-arithmetic means. 
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3. Inequalities for Convex Functions of Several Variables 

The main result in this section is Theorem 3.2, which represents 
Jensen’s inequality for two variables convex function and affine 
combinations from the triangle. 

Take the three planar points ( ) ( ),,,, BBAA yxByxA  and ( )CC yxC ,  

that do not belong to one line. If ,, BA rr GG  and Cr
G  are its radius-vectors, 

the radius-vector Pr
G  of any point ( ) 2, R∈yxP  is presented by the 

unique affine combination 

,CPBPAPP rrrr GGGG
γ+β+α=   (3.1) 

where 

.

1

1

1
1

1

1

,

1

1

1
1

1

1

,

1

1

1
1

1

1
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P

CC
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AA
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AA

P

CC

BB

AA
CC

BB

P

yx

yx

yx
yx

yx

yx

yx

yx

yx
yx

yx

yx

yx

yx

yx
yx

yx

yx

=γ−=β=α  

(3.2) 

Let RR →2:f  be a convex function, and { }( )yxfz CBA ,pla
,,=  be the 

plane passing through the points ( )( ) ( )( ),,,, BfBAfA  and ( )( )CfC,  of 

the graph of f. The plane inequality 

( ) ( ) ( ) ( ) { }( ),pla
,, PfCfBfAfPf CBAPPP =γ+β+α≤  (3.3) 

holds for every point { },,,conv CBAP ∈  because for these points the 

combination in (3.1) is convex. If { },,,conv CBAP ∈/  the reverse 

inequality is not necessarily valid in (3.3). 
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Lemma 3.1. Let 2,, R∈CBA  be points that do not belong to one 

line. Let { }CBAD ,,conv∈  be a point. Let [ ] [ ]1,1,1,0,, −∈δ∈γβα  be 

coefficients with δ−≥γβα ,,  of the sum .1=δ+γ+β+α  

If 

,DCBAP rrrrr GGGGG
δ+γ+β+α=  

then every convex function { } R→CBAf ,,conv:  satisfies the inequality 

( ) ( ) ( ) ( ) ( ).DfCfBfAfPf δ+γ+β+α≤   (3.4) 

Proof. Let us show that the affine combination CBAP rrrr GGGG
γ+β+α=  

Dr
G

δ+  is actually the convex combination. Since the point 

{ },,,conv CBAD ∈  the convex combination CDBDADD rrrr GGGG
γ+β+α=  

holds with the coefficients DDD γβα ,,  taken from the formulas in (3.2). 

Therefore, we have 

[ ( ) ( ) ] ADDDCBAP rrrrrr GGGGGG
αγ−β−+α−α=δ+γ+β+α= 11  

[ ( ) ( ) ] BDD rGβγ−α−+β−β+ 11  

[ ( ) ( ) ] .11 CDD rGγβ−α−+γ−γ+  (3.5) 

The coefficients in the square brackets are non-negative with the        
sum equal to 1, so the observed combination is convex, and 

{ }.,,conv CBAP ∈  

If ,0≥δ  the inequality in (3.4) is the Jensen inequality for the four-

membered convex combination .Pr
G  

If ,0≤δ  we use the plane inequality in (3.3) and the affinity of 

{ }
pla

,,
pla

CBAff =∆  (Lemma 2.1 is valid for the affine functions of several 

variables) to obtain 
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( ) ( ) ( ) ( ) ( ) ( )DfCfBfAfPfPf plaplaplaplapla
∆∆∆∆∆ δ+γ+β+α=≤  

( ) ( ) ( ) ( ),DfCfBfAf δ+γ+β+α≤  

respecting the facts ( ) ( ) ( ) ( ) ( ) ( )CfCfBfBfAfAf === ∆∆∆
plaplapla ,,  and 

particularly ( ) ( ).pla DfDf δ≤δ ∆   

Theorem 3.2. Let 2,, R∈CBA  be points that do not belong to one 

line. Let { }CBAPi ,,conv∈  be points. Let [ ] [ ]1,1,1,0,,, −∈δ∈γβα ip  

be coefficients with δ−≥γβα ,,  of the sums .11 ==δ+γ+β+α ∑ = i
n
i p  

If 

,
1

iPi

n

i
CBAP rprrrr GGGGG ∑

=

δ+γ+β+α=  

then every convex function { } R→CBAf ,,conv:  satisfies the inequality 

( ) ( ) ( ) ( ) ( ).
1

ii

n

i
PfpCfBfAfPf ∑

=

δ+γ+β+α≤   (3.6) 

Proof. The proof coincides with the proof of Theorem 2.4 by applying 

Lemma 3.1.   

Substituting 21=δ−=γ=β=α  into the formula in (3.6), we get 

the triangle analogy of the Jensen-Mercer interval inequality in (1.3): 















 −++−++ ∑∑ ==
2,2

11 ii
n

iCBAii
n

iCBA ypyyyxpxxx
f  

( ) ( ) ( ) ( )
.2

,,,,
1 iii

n

iCCBBAA yxfpyxfyxfyxf ∑ =
−++

≤  (3.7) 
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We finish the article by generalizing Theorem 3.2 to simplexes. If 
m

mAA R∈+11 ,, …  are points such that the vectors mm AAA rrr G…GG ,,11 +
−  

1+− mArG  are linearly independent, then the convex hull { }11 ,,conv +mAA …  

is called the m-simplex with vertices .,, 11 +mAA …  Geometrically 

speaking, all the simplex vertices can not belong to the same hyperplane. 
If ( ),,,1 jmjjj xxAA …=  the radius-vector Pr

G  of any point 

( ) m
mxxP R∈,,1 …  is presented by the unique affine combination 

,
1

1
jAj

m

j
P rr GK

α= ∑
+

=

  (3.8) 

where the coefficients jα  can be calculated generalizing determinants of 

(3.2). 

Let RR →mf :  be a convex function, and ( )( )mAm xxfx
j

,,1
hyp

1 …=+  

be the hyperplane ( )1in +mR  passing through the points ( ( ))jj AfA ,  of 

the graph of f. The hyperplane inequality 

( ) ( ) { }( ),hyp
1

1
PfAfPf

jAjj

m

j
=α≤ ∑

+

=

  (3.9) 

holds for every point { }.conv jAP ∈  

Corollary 3.3. Let m
mAA R∈+11 ,, …  be points that do not belong to 

one hyperplane. Let { }11 ,,conv +∈ mi AAP …  be points. Let ,jα  

[ ] [ ]1,1,1,0 −∈α∈ip  be coefficients with α−≥α j  of the sums 

α+α∑ +
= j

m
j

1
1  .11 == ∑ = i

n
i p  

If 

,
1

1

1
ij Pi

n

i
Aj

m

j
P rprr GGG ∑∑

=

+

=

α+α=  
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then every convex function { } R→+11 ,,conv: mAAf …  satisfies the 

inequality 

( ) ( ) ( ).
1

1

1
ii

n

i
jj

m

j
PfpAfPf ∑∑

=

+

=

α+α≤   (3.10) 
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