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Abstract

The article deals with the generalizations of Jensen-Mercer’s inequality using
affine combinations, which can be represented as convex combinations. The
generalized Jensen-Mercer’s inequality is also obtained for the convex function
of several variables applying affine combinations of the simplex.

1. Introduction

1.1. Combinations of scalars and vectors

The convex sets are generally observed in a real vector space X.
Affiliation to some vector set is analytically expressed by combinations of

vectors (points) x; € X and scalars (coefficients) p; € R. The sum

n
Zpixi, (11)
=1
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belongs to the vector subspace lin{x;} (the smallest vector space that

contains all x;), and it is called the linear combination. If Z?Zl p; =1,

the sum in (1.1) belongs to the affine hull aff{x;} (the smallest translated

vector space that contains all x;), and it is called the affine combination.

If Z?:1pi =1 and all p; € [0, 1], the sum in (1.1) belongs to the convex

hull convi{x;} (the smallest convex vector set that contains all x;), and it

is called the convex combination.
1.2. Jensen’s inequality and related results

In the discrete case, Jensen’s inequality is applied to the convex

combinations of vectors.
Theorem A [Jensen’s inequality]. Let X be a real vector space.

n . .
Let Ziz1pixi be a convex combination of vectors x; € X and

scalars p; € R of the sum Z?lei =1. Then every convex function

f :conv{xy, ..., x,} = R verifies the inequality

f(zn:pixiJ < Zn:pif(xi)- (1.2)
-1 -1

The famous inequality in (1.2) is usually called the discrete form of
Jensen’s inequality, and can be found in many books, for example, in
[5, pages 112-113].

Let us mention the following two related results:

Theorem B [3, Theorem 1.2]. Let xq, ..., x,, € [a, b] = R be points,

and p; > 0 be weights with Z?zlpi =1. If f:[a, b] > R is a convex

function, then

f[a+b—zpixi] < f(a)+f(b)_zpif(xi)- (1.3)
i1 =1
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The inequality in (1.3) is usually called Jensen-Mercer’s inequality.
Generalization of this inequality turned toward dJensen-Steffensen’s
inequality has been achieved in [1]. Jensen-Steffensen’s inequality uses

the assumption of order of the points x;.

The Jensen-Mercer inequality in (1.3) was generalized by applying

the majorization assumptions.

Theorem C [6, Theorem 2.1]. Let f : T — R be a continuous convex

function on an interval T c R. Suppose a = (ai, ..., a,,) with a; € 7,
and X = (x;;) is a real nxm matrix such that x;; € T for all i, j.
. . n
Let p; > 0 be weights with Zi:1pi =1.
If a majorizes each row of X, that is,

x; = (x5, 000, X ) < (a1, ..., ap,) = @ foreach i =1, ..., n,

then we have the inequality

m m-1 n m -1 n
f[za,- i zzp,-xi,} S-S St 0w
j=1 j=1i=1 j=1 j=1i=1

2. Inequalities for Convex Functions of One Variable

The main result in this section is Theorem 2.4, which represents
Jensen’s inequality for one variable convex function and affine

combinations from the interval.

In what follows, we use a real interval [a, b] assuming a < b. Every

x € R can be uniquely presented as the affine combination

X = o,a+ PB,b, 2.1)
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where
X 1 X 1
b 1 a 1
Oy = 1 ’ Bx - a 1 (2-2)
b 1 b 1

Let f : R — R be a convex function, and }‘{th} be the chord line passing

through the points A(a, f(a)) and B(b, f(b)) of the graph of f. If
x € [a, b], then the above combination is convex, and we have the chord

inequality
f(®) < axf(a) + Bef(B) = £575, (). 2.3)
If x ¢ [a, b], then the reverse inequality is valid in (2.3).

Simplicity of the chord line f{(;},l?)}(x) as the affine function A(x) = kx + [
will be very useful.

Lemma 2.1. Let x; € R be points. Let a; € R be coefficients of the
sum Z?zloci =1. Then every affine function h:R — R verifies the

equality

h[zn:(lixi] = iaih(xi). (24)
i=1 =1

We will examine the behaviour of convex functions on some special

types of affine combinations.

Lemma 2.2. Let c € [a, b] be a point. Let o, p €[0,1], y € [-1, 1]
be coefficients of the sum o +B+y =1. Then every convex function

f : [a, b] > R verifies the inequality
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flaa +Bb + vc) < af(a) + BF(b) + ¥f(c). (2.5)

Proof. First of all, let us show that the affine combination
aa + Bb + yc belongs to [a, b]. Since ¢ € [a, b], it has tobe ¢ = a.a + B.b

for coefficients o, and B, taken from the formulas in (2.2). Then we have
aa+Bb+yc=aa+Bb+(1-a-B)(a.a+Bb)

= [0((1 — O¢ ) + (1 - B)ac]a + [B(l - Bc ) + (1 - OL)Bc]b- (2-6)

The coefficients in the square brackets are non-negative with the sum

equal to 1, so the observed expression aa + Bb + yc belongs to [a, b].

If y > 0, the inequality in (2.5) is the Jensen inequality for the three-
membered convex combination aa + b + yc.
If y <0, we use the inequality in (2.3) and the affinity of the chord

line f{(;},l(é}’ in this way;

floa +Bb + ye) < f{ilz}(oca +Bb + yc)

af 9 (@) + B (6) + 1179 (o)

IA

af(a) + Bf(6) + ¥f(c),

respecting that f{f’lz}(a) = f(a), f{z}’lz}(b) = f(b), and yf{‘;}fz}(c) <yf(c). O

Sufficient conditions on the coefficients in Lemma 2.2 are: a, B € [0, 1]

and o + B + 7 = 1. From these conditions, it follows vy € [-1, 1].

The following useful fact is the consequence of the equality in (2.6).

Corollary 2.3. An affine combination aa + b + yc belongs to [a, b]

for every c € [a, b] if and only if the coefficients o and B belong to [0, 1].
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Proof. The sufficiency is proved in Lemma 2.2. The necessity follows

by putting the extreme values of the coefficients o, and B, (0 or 1) in the

right-hand side of the equality in (2.6). a

The analytic inequality written in the formula in (2.5) can be

described by a geometric figure. Given c € [a, b], take the graph points
A(a, f(a)), B(b, f(b)), and C(c, f(c)), and determine the position of the

points
Plaa +Bb + ye, af(a) + Bf(b) + v/(c)),
for a, B € [0, 1] and o + B + vy = 1. We have the radius-vectors equality
fp = afg +PBrg +yic = (a+7)fa + B+7)ig —v(Fa +7p —Tc). (2.7

If y >0, the left-hand side of the equality in (2.7) represents the
convex combinations of the vectors 74, 7rg, and 7¢. Interpreted

geometrically, the points P belong to the triangle conv{A, B, C}.

If y < 0, the coefficients o + 7y, B+ 7y, —y € [0, 1] with the sum equal
to 1. Take the point D(a + b — ¢, f(a) + f(b) — f(c)). The right-hand side of

the equality in (2.7) represents the convex combinations of the vectors

74, g, and 7p. This means that the geometric location of the points P is

just the triangle conv{A, B, D}.
Theorem 2.4. Let x; €[a,b] be points. Let a,B, p; €0, 1],
y € [-1, 1] be coefficients of the sums o + P +y = Z?lei =1. Then every

convex function f : [a, b] — R verifies the inequality

f [aa +Bb+ vaixiJ < af(a) + Bf(b) + v pif ;). 2.8)
i=1 i=1
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Proof. Since Z?zl p;x; € [a, b], the affine combination aa + b +y

Z?zlpixi € [a, b] by Lemma 2.2. The proof continues as in Lemma 2.2.

Particularly, in the case y < 0, the chord inequality yf{zhz}(xi) < yf(x;) is

applied to every x;. a

For o =B =0 and y =1, the inequality in (2.8) is reduced to the
Jensen inequality. For o = =1 and y = -1, the inequality in (2.8) is
reduced to the Jensen-Mercer inequality.

Given a function f, points x; and coefficients a, B, y, p; that satisfy

the conditions of Theorem 2.4, the points
n n
Plaa +Bb+7) . pixi, of (@) +Bf(®) +7) . pif (xi),

belong to the convex polygon
P = conv{A(a, f(a)), Ci(x;, f(x;)), Di(a +b - x;, f(a)+ f(b) - f(x;)), B(b, f(b))}-

Such a polygon P for n = 2 is shown in Figure 1.

¥
fla)+f(b)—f(z1)

J(a)+ f(b)—f(x2)

a Ty a+b—mxs T2 a+b—mx b

Figure 1. Geometric interpretation of the inequality in (2.8).
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Lemma 2.2 can be used to obtain a more general variant of Theorem

2.4 introducing points a; that do not belong to the convex hull of the

points x;, as stated:

Theorem 2.5. Let aj, x; € R be points so that

{aj, ..., ap} Nconvixy, ..., x,,} = 0 or {endpoint(s)}.
Let aj, p; €[0,1], y € [-1,1] be coefficients of the sums Z;n:laj +y=

Z?:lpi =1.
If

m m
: a { ! f >0
_ 0jaj € CoNViXy, ..., X, for a; >0,
Jj=1 Jj=1

25
o e
j=1

then every convex function f : conviay, ..., a,,} — R verifies the inequality
m n m n

f Zajaj + szixi < Zotjf(aj)+ szif(xi)- 2.9
=1 i1 =1 i1

Proof. Take [a, b] = conv{xy, ..., x,,}. The representation Z;nﬂ o

a;j = aa + Bb can be achieved with a, § € [0, 1] and a +f = Z;’lzlaj. If
we still substitute ¢ = Z?ZI Dp;x;, the combination under the function fis
reduced to the affine combination aa + Bb + yc € [a, b].

If a <b, the proof of Lemma 2.2 can be applied, respecting the

inequalities ocjf{fl}’lz}(aj) < ocjf(aj), and y}f{flhz}(xl) < vf(x;) for y < 0.

If a = b, the support line y = f{Z‘ip(x) would be used. O
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Similar assumptions as in Theorem 2.5 with the internal and external

points were applied to obtain Jensen’s inequality in [7, Section 2].
We are trying to generalize the inequality in (2.8) using the special

affine combinations Z:L:lyixi instead of the convex combinations
Z?: L Pi%i- As the orientation, the following lemma can be specified.

Lemma 2.6. Let ¢, d € [a, b] be points. Let a, B, vy € [0, 1], § € [-1, 1]
be coefficients of the sum o + B+ 7+ 6 = 1.

If a +8 >0 and B+ 8 > 0, then every convex function f : [a, b] > R
verifies the inequality

flaa + Bb + ye + 8d) < af(a) + Bf(b) + yf(c) + 8f(d). (2.10)

Proof. Let us prove the inequality in (2.10) for & < 0. Since the
right-hand side of the equality

oa+Bb+yc+8d =(a+8)a+P+38)b+y—-58a+b-d), (2.11)

is the convex combination, we first apply Jensen's inequality, and then

the inequality in (2.5) to a + b — d. The procedure goes as follows:

floa + Bb + ye + 3d) < (o + 8)f(a) + (B + 8)f(b) + vf(c) — 8f(a + b — d)
< (a+8)f(a) + (B + 8)f(b) + vf(c) - 8[f(a) + f(b) - f(a)]
= af(a)+ Bf(b) + vf(c) + 3(d),

which ends the proof of the observed case. O

It is not necessary to require the condition & e [-1, 1], because it

follows from other coefficient conditions.

Applying experience of Lemma 2.6, we can formulate the following

generalization of Theorem 2.4:
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Theorem 2.7. Let x; < [a, b] be points. Let a, B €[0,1], v, v; € [-1,1]

be coefficients of the sums o+ B +y = Z?zlyi =1. Suppose Yips -5 Vi, 2 0

n

k —
and vy ..., v, <0. Let § = Zj:1Yij and § = Zj=k+1yij'
If either
Yy >0, a+ngO, B+y§20,

or

Yy<0, a+y6=>20, PB+752=0,

then every convex function f : [a, b] - R verifies the inequality

n n
f [Ota +Bb + YZYixij < of(a) + Bf(b) + YZYif(xi)- (2.12)
=1 1=1
Proof. Let us prove the case y > 0. The right-hand side of the
decomposition
n k n
oa + pb + YZYixi =oa+pb+ YZYijxij +v Z Vi;%i;
i=1 7=1 =kl

k
(a+y8)a+(B+18)b+v) vix;
i1

+1 ) (Cy)a+b-x),

Jj=k+1

is the convex combination that belongs to [a, b]. We first apply the

Jensen inequality to the above convex combination, then the inequality

in (2.5) to affine combinations a+b—xij, and so, using the same

procedure as in Lemma 2.6, obtain the inequality in (2.12). |
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The inequality in (2.12), together with its assumptions, recalls the
Jensen-Steffensen inequality, but no requirement for the order of the
points x;.

2.1. Generalizations

Theorem 2.4 can be generalized by introducing a real valued function
g defined on the non-empty set S, as follows:

Corollary 2.8. Let g: S —> R be a function that attains extreme
values g(a), g(b) for some a, b € S, thus g(x) € convig(a), g(b)} = Z for
every x € S. Let x; € S be points. Let o, B, p; €[0,1], y € [-1,1] be

coefficients of the sums o + B+ vy = Z?ﬂpi = 1. Then the inequality

flog(a)+ Be®d) + 1) piglx;) | < af(g(a) + Bf(g(®) + v pif(g(x;)),
i=1 i=1

(2.13)

holds for every convex function [ : T — R.

We can include more functions and more intervals in the
generalization procedure.

Corollary 2.9. Let g; : S —> R be functions that attain extreme values
gj(aj), g](bj) for some aj, b] e S, thus g](x) € conv{gj(a), gj(b)} =1;
for every x € S. Let x;; € S be points. Let o;, B, p;j, pj € [0, 1],

v; € [-1, 1] be coefficients of the sums o.j +Bj +v; = Z?:lpij = Z;.nzlpj =1.
Then the inequality
m n
f[ij[Otjgj(aj)+ Big;(b;)+ szpijgj(xij )]]
j=1 =1

< ij {ajf(gj(aj ) +B;f(gj(b;))+ szpijf(gj(xij))], (2.14)
i1

j=1

holds for every convex function f : conv{Z; U...UZ,,} > R.
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Proof. First apply the basic form of Jensen’s inequality with respect
to the non-negative coefficients p;, then Corollary 2.8. O
The generalizations of Theorem 2.7 can be implemented in exactly
the same way.
2.2. Application to quasi-arithmetic means

Let Z < R be an interval. In the applications of convexity, we often

use strictly monotone continuous functions ¢, ¥ : Z — R such that y is

convex with respect to ¢ (¢ is ¢-convex), that is, f = p oo ! is convex

on ¢(Z). A similar notation is used for the concavity.

Let " p;x; be a convex combination from Z. The discrete
=117

¢-quasi-arithmetic mean of the points x; with the coefficients p; is the

point
M (x;; p;) = (p_{zpiao(xi)} (2.15)
i=1

which belongs to Z. The point M(p(x,-; p;) can also be called the ¢-quasi-

center of the convex combination ¢ = Z?:l p;x;. The formula in (2.15)
may be applied for a quasi-arithmetic mean definition of an affine

combination aa + Bb + yZ?:l p;x; that belongs to [a, b], in this way;

My(a, b, x;; o, B, yp;) = 0| ap(a) + Bo(b) + szi(P(xi) . (2.16)
i=1

The mean defined in (2.16) belongs to [a, b] because ag(a)+ Be(d) + v

> piolx;) belongs to o(a, b)),
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We have the following application of Theorem 2.4 to the quasi-

arithmetic means.

Corollary 2.10. Let x; € [a, b] be points. Let p;, a, B € ][0, 1],
y € [-1,1] be coefficients of the sums o +p+7y = Z?ﬂpi =1. Let
o, ¥ : [a, b] > R be strictly monotone continuous functions.

If v is either @-convex and increasing or @-concave and decreasing,
then the inequality

My(a, b, x5 o, B, vp;) < My(a, b, x;5 o, B, vp;), (2.17)

holds.

If v is either @-convex and decreasing or @-concave and increasing,

then the reverse inequality is valid in (2.17).

Proof. The proof is easy and uses the convex (respectively, concave)
function f =poo ! : ¢(a, b]) > R, which can be applied to Theorem
2.4. O

Using the pairs of functions ¢(x) = x %, ¥(x) = Inx, and ¢(x) = In x,
¥(x) = x in the inequality in (2.17) with a, b > 0, we get the harmonic-

geometric-arithmetic inequality for the means defined in (2.16):

n -1 n n
a,B Pi| BT [ < N
[a T y; xij <a”d !le x/" < oa+Bb+ Y;ple- (2.18)

The inequality in (2.17) can be refined using the procedures given in
[4, Section 2]. Theorem 2.7, Corollaries 2.8 and 2.9 can also be applied to

derive quasi-arithmetic means.
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3. Inequalities for Convex Functions of Several Variables

The main result in this section is Theorem 3.2, which represents
Jensen’s inequality for two variables convex function and affine
combinations from the triangle.

Take the three planar points A(x4, ¥4 ), B(xp, yg), and C(x¢, y¢)

that do not belong to one line. If 74, g, and 7o are its radius-vectors,

the radius-vector 7p of any point P(x, y) e R? is presented by the

unique affine combination

'p = aprg +Bprp +VpIC, (3.1
where
x y 1 x y 1 x y 1
xR YB 1 XA Ya 1 XA YA 1
ap =1XC yc I,BP:—xC yc l,YP: Xp yB
XA Ya 1 XA YA 1 XA ya
xR YB 1 xp YB 1 xR B 1
xc Yc 1 xc Y 1 xc Y 1
3.2)

Let f: R%2 - R be a convex function, and z = IC{IX?B,C}(X’ y) be the
plane passing through the points (A4, f(A)), (B, f(B)), and (C, f(C)) of
the graph of /. The plane inequality

f(P) < apf(A)+Bpf(B)+ vpf(C) = f57 5 y(P), (3.3)

holds for every point P e conv{A, B, C}, because for these points the
combination in (8.1) is convex. If P ¢ conv{A, B, C}, the reverse

inequality 1s not necessarily valid in (3.3).
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Lemma 3.1. Let A, B, C e R2 be points that do not belong to one
line. Let D e conv{A, B, C} be a point. Let o, B, y € [0, 1], § € [-1, 1] be
coefficients with a, B, y > -8 of thesum a+p+y+3d =1.

If

fp = O(,FA +BFB +'}/fC +6fD,
then every convex function f : conv{A, B, C} — R satisfies the inequality
f(P) < af(A) + Bf(B) + vf(C) + &f(D). (3.4)

Proof. Let us show that the affine combination rp = aryq + prg + yi¢
+0rp is actually the convex combination. Since the point
D e conv{A, B, C}, the convex combination 7p = apis + Bprg + yYpic
holds with the coefficients ap, Bp, yp taken from the formulas in (3.2).

Therefore, we have
ip = oy +Brg +yi¢ +87p = [al —ap)+ (1 -B-v)aplia
+[BL-Bp)+ A -a-vBplip
+[y@A-vp)+ @ -a-Blplic. (3.5

The coefficients in the square brackets are non-negative with the
sum equal to 1, so the observed combination is convex, and
P < convi{A, B, C}.

If 6§ > 0, the inequality in (3.4) is the Jensen inequality for the four-

membered convex combination 7p.

If 6§ <0, we use the plane inequality in (3.3) and the affinity of

Apla = {IX?B,C} (Lemma 2.1 is valid for the affine functions of several

variables) to obtain
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f(P) < fP(P) = of P (A) + BFP™(B) + yfP'(C) + 3£ (D)
< af(A) + Bf(B) + vf(C) + 8f(D),
respecting the facts fP'*(A) = f(A), fP'*(B) = f(B), fP'#(C) = f(C) and

particularly Sprla (D) < 8f(D). O

Theorem 3.2. Let A, B, C e R? be points that do not belong to one
line. Let P; € conv{A, B, C} be points. Let a, B, v, p; € [0, 1], § € [-1, 1]

be coefficients with a, B, y > —8 of thesums o + B+ 7 + 3 = Z?ﬂpi =1.

If

n
FP = OU—"A + BFB + YFC + SZPL?PL’
i=1

then every convex function f : conv{A, B, C} — R satisfies the inequality

f(P) < af (A) + Bf(B) + 4f(C) + 8 pif (P). (3.6)
i=1

Proof. The proof coincides with the proof of Theorem 2.4 by applying
Lemma 3.1. O

Substituting o = =y = -8 = 1/2 into the formula in (3.6), we get

the triangle analogy of the Jensen-Mercer interval inequality in (1.3):

n n
XA tXB +xc—zi:1pixi YA +yB+yC_Zi:1piyi
2 ’ 2

< f(xa, ya)+ f(xp, yp) + f(xc, yc)—z;l?if(xia ¥i)
B 2

. (3.7



GENERALIZATIONS OF JENSEN-MERCER’S ... 35

We finish the article by generalizing Theorem 3.2 to simplexes. If

A, ..., A, .1 € R™ are points such that the vectors Fay —TA, . > TA,
—Ty, ., arelinearly independent, then the convex hull conv{A;, ..., A1}
is called the m-simplex with vertices A4;, ..., 4,,,1. Geometrically

speaking, all the simplex vertices can not belong to the same hyperplane.

If Aj=A;(xj,.... %), the radius-vector 7p of any point
P(xq, ..., x,,) € R™ is presented by the unique affine combination
m+1
fp = :E:(lijj, (3.8)
i

where the coefficients o ; can be calculated generalizing determinants of

J
(3.2).
Let f: R™ — R be a convex function, and x,,,; = }?}X’P)(xl, ey Xpy)
j
be the hyperplane (in R™*!) passing through the points (A, f(Aj)) of

the graph of . The hyperplane inequality

m+1

f(P) < ;a if(4)) = [ER(P), (3.9

holds for every point P e conv{A4;}.

Corollary 3.3. Let Ay, ..., A,,;; € R™ be points that do not belong to
one hyperplane. Let P; e conv{Ay, ..., A,,1| be points. Let «a;,

pi €[0,1], a e [-1,1] be coefficients with o; > -0 of the sums

Z;’:l(xj +o = zyzlpi =1.

If

m+1 n

FP = Zaj?Aj +Otzpi7pi,
j=1 =1
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then every convex function f :conv{A;, ..., A,,.1} —> R satisfies the

inequality

(1]

(2]

(3]

(4]

(5]

(6]

(7

m+1 n

f(P)< Y aif(A))+a) pif(R). (3.10)
j=1 i=1
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